Crystal Field Phonon Interaction

Here some formulas are listed. Starting point is the phonon part, written in more general terms.

Figure 18: Illustration of the transversal and longitudinal BvK springs
\begin{figure}\setlength{\unitlength}{0.14in} % selecting unit length
\cente...
...{picture}
% title of the Figure
% label to refer figure in text
\end{figure}

The index $i$ now denotes all atomic positions in a crystal, the momentum vector is $\mathbf p_i=a_0 \mathbf w_i$ and the displacement vector is $\hat \mathbf U_i$. Fig. 18 shows the Born-van-Karman model definition of longitudinal springs $c_L$ and transversal springs $c_T$ used in the following derivation.


$\displaystyle \hat H_{\rm phon}$ $\textstyle =$ $\displaystyle \sum_{i} \frac{a_0^2\hat \mathbf w_i^2}{2 m_i} +
\frac{1}{2}\sum_...
...vert^2}
(\hat \mathbf U_j . \mathbf R_{ij}-\hat \mathbf U_i . \mathbf R_{ij})^2$ 
    $\displaystyle + \frac{c_T(ij)}{2} (\hat \mathbf U_j - \hat \mathbf U_i )^2$(76)

Note that the sum over indices $i,j$ counts each spring twice, thus a factor of $1/2$ has been added to the Hamiltonian before the sum.

Note that the difference in undisplaced lattice positions is denoted by $\mathbf R_{ij}=\mathbf R_{j}-\mathbf R_{i}$. The displacement vector $\hat \mathbf U_i$ is split into a strain component $\bar \epsilon \mathbf R_i$ a rotational component $\bar \omega \mathbf R_i$ and a dynamic component $\hat \mathbf P_i$ (displacement operator) obeying periodic boundary conditions $\hat \mathbf U_i = \bar \epsilon \mathbf R_i + \bar \omega \mathbf R_i+\hat \mathbf P_i= \bar a \mathbf R_i+\hat \mathbf P_i$.


$\displaystyle (\hat \mathbf U_j . \mathbf R_{ij}-\hat \mathbf U_i . \mathbf R_{ij})^2$ $\textstyle =$ $\displaystyle (\mathbf R_{ij}^T\bar a \mathbf R_{ij}+ \mathbf R_{ij}^T \mathbf P_{ij})^2$ 
  $\textstyle =$ $\displaystyle (\mathbf R_{ij}^T\bar a \mathbf R_{ij})^2 + 2 \mathbf R_{ij}^T\bar a \mathbf R_{ij}\mathbf R_{ij}^T \hat \mathbf P_{ij}$ 
    $\displaystyle + (\mathbf R_{ij}^T \hat \mathbf P_{ij})^2$(77)


$\displaystyle (\hat \mathbf U_j - \hat \mathbf U_i )^2$ $\textstyle =$ $\displaystyle \mathbf R_{ij}^T\bar a^T\bar a \mathbf R_{ij}$ 
    $\displaystyle 2 \mathbf R_{ij}^T\bar a^T\hat \mathbf P_{ij} +\hat \mathbf P_{ij}^T \hat \mathbf P_{ij}$(78)

Equations (81) and (82) contain terms quadratic in $\bar a$, which will be considered as elastic energy contributions. The terms quadratic in $\hat \mathbf P$ will contribute to the lattice dynamics. In addition there are also terms linear in $\bar a$ and $\hat \mathbf P$. Thus the phonon Hamiltonian (79) can be separated into the elastic Energy $E_{el}$, the Einstein single ion oscillation term $H_{\rm E}$, the bilinear interaction term $H_{\rm int}$ and the mixing term $H_{mix}$


$\displaystyle \hat H_{\rm phon}$ $\textstyle =$ $\displaystyle E_{el} +\hat H_{mix}+\hat H_{\rm E}+\hat H_{\rm int}$(79)



Subsections