Crystal Field Phonon Interaction

Here some formulas are listed. Starting point is the phonon part, written in more general terms.

The index $i$ now denotes all atomic positions in a crystal, the momentum vector is $\vec p_i$ and the displacement vector is $\vec U_i$. Fig. 24 shows the Born-van-Karman model definition of longitudinal springs $c_L$ and transversal springs $c_T$ used in the following derivation.


$\displaystyle H_{\rm ph}$ $\textstyle =$ $\displaystyle \sum_{i} \frac{a_0^2 \vec p_i^2}{2 m_i} +
\frac{1}{2}\sum_{ij} \f...
...)}{2\vert\vec R_{ij}\vert^2}
(\vec U_j . \vec R_{ij}- \vec U_i . \vec R_{ij})^2$  
    $\displaystyle + \frac{c_T(ij)}{2} (\vec U_j - \vec U_i )^2$ (75)

Note that the sum over indices $i,j$ counts each spring twice, thus a factor of $1/2$ has been added to the Hamiltonian before the sum.

Note that the difference in undisplaced lattice positions is denoted by $\vec R_{ij}=\vec R_{j}-\vec R_{i}$. The displacement vector $\vec U_i$ is split into a strain component $\bar \epsilon \vec R_i$ a rotational component $\bar \omega \vec R_i$ and a dynamic component $\vec P_i$ obeying periodic boundary conditions $\vec U_i = \bar \epsilon \vec R_i + \bar \omega \vec R_i+ \vec P_i= \bar a \vec R_i+ \vec P_i$.


$\displaystyle (\vec U_j . \vec R_{ij}- \vec U_i . \vec R_{ij})^2$ $\textstyle =$ $\displaystyle (\vec R_{ij}^T\bar a \vec R_{ij}+ \vec R_{ij}^T \vec P_{ij})^2$  
  $\textstyle =$ $\displaystyle (\vec R_{ij}^T\bar a \vec R_{ij})^2 + 2 \vec R_{ij}^T\bar a \vec R_{ij}\vec R_{ij}^T \vec P_{ij}$  
    $\displaystyle + (\vec R_{ij}^T \vec P_{ij})^2$ (76)


$\displaystyle (\vec U_j - \vec U_i )^2$ $\textstyle =$ $\displaystyle \vec R_{ij}^T\bar a^T\bar a \vec R_{ij}$  
    $\displaystyle 2 \vec R_{ij}^T\bar a^T\vec P_{ij} + \vec P_{ij}^T \vec P_{ij}$ (77)

Equations (80) and (81) contain terms quadratic in $\bar a$, which will be considered as elastic energy contributions. The terms quadratic in $\vec P$ will contribute to the lattice dynamics. In addition there are also terms linear in $\bar a$ and $\vec P$. Thus the phonon Hamiltonian (78) can be separated into the elastic Energy $E_{el}$, the Einstein single ion oscillation term $H_{\rm E}$, the bilinear interaction term $H_{\rm int}$ and the mixing term $H_{mix}$


$\displaystyle H_{\rm ph}$ $\textstyle =$ $\displaystyle E_{el} + H_{mix}+ H_{\rm E}+H_{\rm int}$ (78)



Subsections