Elastic Energy $E_{el}$

The elastic energy $E_{el}$ is bilinear in $a$


$\displaystyle E_{el}$ $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{ij} \frac{c_L(ij)-c_T(ij)}{2\vert\mathbf R_{ij}\vert^2}
(\mathbf R_{ij}^T\bar a \mathbf R_{ij})^2$(80)
    $\displaystyle + \frac{c_T(ij)}{2} \mathbf R_{ij}^T\bar a^T\bar a \mathbf R_{ij}$ 
  $\textstyle =$ $\displaystyle \frac{1}{2} \sum_{ij,\alpha\beta\gamma\delta} \frac{c_L(ij)-c_T(i...
...ha}R_{ij}^{\beta}R_{ij}^{\gamma}R_{ij}^{\delta}
a_{\alpha\beta}a_{\gamma\delta}$ 
    $\displaystyle + \frac{c_T(ij)}{2} R_{ij}^{\alpha} R_{ij}^{\delta}
a_{\alpha\beta} \delta_{\beta\gamma} a_{\gamma\delta}$ 

We calculate it's derivative with respect to $a_{\alpha\beta}$:


$\displaystyle \frac{\partial E_{el}}{\partial a_{\alpha\beta}}$ $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{ij,\gamma\delta} \frac{c_L(ij)-c_T(ij)}{\vert\ma...
...2}
R_{ij}^{\alpha}R_{ij}^{\beta}R_{ij}^{\gamma}R_{ij}^{\delta}
a_{\gamma\delta}$ 
    $\displaystyle + \frac{c_T(ij)}{2} R_{ij}^{\alpha}R_{ij}^{\delta}
\delta_{\beta\gamma} a_{\gamma\delta} +$ 
    $\displaystyle \frac{c_T(ij)}{2} R_{ij}^{\gamma} R_{ij}^{\beta}
a_{\gamma\delta} \delta_{\delta\alpha}$(81)

An we make also use of the definition of elastic constants:


$\displaystyle c^{\alpha\beta\gamma\delta}$ $\textstyle =$ $\displaystyle \frac{\partial^2E_{el}}{\partial a_{\alpha\beta} \partial a_{\gamma\delta}}$(82)
  $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{ij}\frac{c_L(ij)-c_T(ij)}{\vert\mathbf R_{ij}\vert^2}
R_{ij}^{\alpha}R_{ij}^{\beta}R_{ij}^{\gamma}R_{ij}^{\delta}$ 
    $\displaystyle + \frac{c_T(ij)}{2} R_{ij}^{\alpha}R_{ij}^{\delta}
\delta_{\beta\gamma} +$ 
    $\displaystyle \frac{c_T(ij)}{2} R_{ij}^{\gamma} R_{ij}^{\beta}
\delta_{\delta\alpha}$(83)

we make use of the fact that the strain $\bar \epsilon$ is a symmetric tensor ( $\epsilon_{\alpha\beta}=\epsilon_{\beta\alpha}$) and a rotation is antisymmetric ( $\omega_{\alpha\beta}=-\omega_{\beta\alpha}$) and the linear transformation $\bar a$ can be written as $\bar a=\bar \epsilon + \bar \omega$. Thus it is possible to rewrite the elastic energy in the well known fashion


$\displaystyle E_{el}$ $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{\alpha\beta\gamma\delta} c^{\alpha\beta\gamma\delta} \epsilon_{\alpha\beta}\epsilon_{\gamma\delta}$(84)

Note that we have neglected the fact, that nonzero transversal springs will result in a dependence of the elastic energy on the rotation tensor $\bar \omega$ as can been seen by inserting a rotation into the second part of (84). 12 Therefore transversal springs have to be used with caution in the description of a phonon spectrum.

Note that the transversal spring part in the elastic constants as defined in (86) is not symmetric upon exchange of indices. It is convenient to use a symmetrized version of the elastic constants, which will yield the same elastic energy, because the strain tensor is symmetric:


$\displaystyle c^{\alpha\beta\gamma\delta}$ $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{ij}\frac{c_L(ij)-c_T(ij)}{\vert\mathbf R_{ij}\vert^2}
R_{ij}^{\alpha}R_{ij}^{\beta}R_{ij}^{\gamma}R_{ij}^{\delta}$ 
    $\displaystyle + \frac{c_T(ij)}{4} ( R_{ij}^{\alpha}R_{ij}^{\delta}
\delta_{\beta\gamma} +$ 
    $\displaystyle R_{ij}^{\gamma} R_{ij}^{\beta}
\delta_{\delta\alpha}$ 
    $\displaystyle + R_{ij}^{\beta}R_{ij}^{\delta}
\delta_{\alpha\gamma} + R_{ij}^{\gamma}R_{ij}^{\alpha}
\delta_{\delta\beta} )$ 

With the help of elastic constants we can rewrite the derivative of the elastic energy (88), again ignoring the rotation dependence:


$\displaystyle \frac{\partial E_{el}}{\partial \epsilon_{\alpha\beta}}$ $\textstyle =$ $\displaystyle \sum_{\gamma\delta=1,2,3} c^{\alpha\beta\gamma\delta} \epsilon_{\gamma\delta}$(85)

To easy the indexing we apply the notation of Voigt

$\displaystyle \epsilon_1$ $\textstyle =$ $\displaystyle \epsilon_{11}$(86)
$\displaystyle \epsilon_2$ $\textstyle =$ $\displaystyle \epsilon_{22}$ 
$\displaystyle \epsilon_3$ $\textstyle =$ $\displaystyle \epsilon_{33}$ 
$\displaystyle \epsilon_4$ $\textstyle =$ $\displaystyle 2\epsilon_{23}=2\epsilon_{32}$ 
$\displaystyle \epsilon_5$ $\textstyle =$ $\displaystyle 2\epsilon_{31}=2\epsilon_{13}$ 
$\displaystyle \epsilon_6$ $\textstyle =$ $\displaystyle 2\epsilon_{12}=2\epsilon_{21}$ 

Note the elastic constants do not contain any prefactor in Voigt notation, i.e.

$\displaystyle c^{11}$ $\textstyle =$ $\displaystyle c^{1111}$(87)
$\displaystyle c^{44}$ $\textstyle =$ $\displaystyle c^{2323}$ 

There are 21 independent elastic constants, $c^{\alpha\beta}$ with $\beta=1,...,6$ and $\alpha \le \beta$ (or less, see http://koski.ucdavis.edu/BRILLOUIN/CRYSTALS/Elasticities.html). The other 60 elastic constants can be obtained from the symmetry relations $c^{\alpha\beta}=c^{\beta\alpha}$, $c^{\alpha\beta\gamma\delta}=c^{\beta\alpha\gamma\delta}=c^{\alpha\beta\delta\gamma}$.

The elastic energy in Voigt notation is given by


$\displaystyle E_{el}$ $\textstyle =$ $\displaystyle \frac{1}{2}\sum_{\alpha\gamma=1,..,6} c^{\alpha\gamma} \epsilon_{\alpha}\epsilon_{\gamma}$(88)