The lattice dynamic terms $H_{E}+H_{int}$

Coming back to equations (81) and (82) we rewrite the terms quadratic in the phonon displacement operators


$\displaystyle (\mathbf R_{ij}^T \hat \mathbf P_{ij})^2$ $\textstyle =$ $\displaystyle \sum_{\alpha,\beta=1,2,3} R_{ij}^{\alpha}R_{ij}^{\beta}(\hat P_{j}^{\alpha}-\hat P_{i}^{\alpha})(\hat P_{j}^{\beta}-\hat P_{i}^{\beta})$(91)


$\displaystyle \hat \mathbf P_{ij}^T \hat \mathbf P_{ij}$ $\textstyle =$ $\displaystyle \sum_{\alpha=1,2,3} (\hat P_{j}^{\alpha}-\hat P_{i}^{\alpha})^2$ 
  $\textstyle =$ $\displaystyle \sum_{\alpha=1,2,3} (\hat P_{j}^{\alpha})^2 +(\hat P_{i}^{\alpha})^2- 2 \hat P_{i}^{\alpha} \hat P_{j}^{\alpha}$(92)

The single ion Hamiltonian $H_{\rm E}$ is similar to the linear chain, in general


$\displaystyle \hat H_{\rm E}$ $\textstyle =$ $\displaystyle \sum_{i} \hat H_{\rm E}(i)$ 
$\displaystyle \hat H_{\rm E}(i)$ $\textstyle \equiv$ $\displaystyle \frac{a_0^2 \hat \mathbf w_i^2}{2 m_i} -\frac{1}{2}
\sum_{\alpha} K_{\alpha\beta}(ii) \hat P_{i}^{\alpha}\hat P_{i}^{\beta}a_0^{-2}$(93)


$\displaystyle K_{\alpha\beta}(ii)$ $\textstyle \equiv$ $\displaystyle -a_0^2\sum_{j} \frac{R_{ij}^{\alpha}R_{ij}^{\beta}}{\vert\mathbf R_{ij}\vert^2}
[c_L(ij)-c_T(ij)] +$ 
    $\displaystyle + \delta_{\alpha\beta} c_T(ij)$(94)
and the interaction Hamiltonian $H_{\rm int}$


$\displaystyle \hat H_{\rm int}$ $\textstyle =$ $\displaystyle -\frac{1}{2}\sum_{i\ne j,\alpha\beta} K_{\alpha\beta}(ij) \hat P_{i}^{\alpha}\hat P_{j}^{\beta}a_0^{-2}$(95)

$\displaystyle K_{\alpha\beta}(ij)$ $\textstyle \equiv$ $\displaystyle a_0^2\frac{R_{ij}^{\alpha}R_{ij}^{\beta}}{\vert\mathbf R_{ij}\vert^2}[c_L(ij)-c_T(ij)]
+a_0^2\delta_{\alpha\beta}c_T(ij)$