The lattice dynamic terms $H_{E}+H_{int}$

Coming back to equations (80) and (81) we rewrite the terms quadratic in the phonon displacement operators


$\displaystyle (\vec R_{ij}^T \vec P_{ij})^2$ $\textstyle =$ $\displaystyle \sum_{\alpha,\beta=1,2,3} R_{ij}^{\alpha}R_{ij}^{\beta}(P_{j}^{\alpha}-P_{i}^{\alpha})(P_{j}^{\beta}-P_{i}^{\beta})$ (92)


$\displaystyle \vec P_{ij}^T \vec P_{ij}$ $\textstyle =$ $\displaystyle \sum_{\alpha=1,2,3} (P_{j}^{\alpha}-P_{i}^{\alpha})^2$  
  $\textstyle =$ $\displaystyle \sum_{\alpha=1,2,3} (P_{j}^{\alpha})^2 +(P_{i}^{\alpha})^2- 2 P_{i}^{\alpha} P_{j}^{\alpha}$ (93)

The single ion Hamiltonian $H_{\rm E}$ is similar to the linear chain, in general


$\displaystyle H_{\rm E}$ $\textstyle =$ $\displaystyle \sum_{i} H_{\rm E}(i)$  
$\displaystyle H_{\rm E}(i)$ $\textstyle \equiv$ $\displaystyle \frac{a_0^2 \vec p_i^2}{2 m_i} -\frac{1}{2}
\sum_{\alpha} K_{\alpha\beta}(ii) P_{i}^{\alpha}P_{i}^{\beta}a_0^{-2}$ (94)
$\displaystyle K_{\alpha\beta}(ii)$ $\textstyle \equiv$ $\displaystyle -a_0^2\sum_{j} \frac{R_{ij}^{\alpha}R_{ij}^{\beta}}{\vert\vec R_{ij}\vert^2}
[c_L(ij)-c_T(ij)] +$  
    $\displaystyle + \delta_{\alpha\beta} c_T(ij)$ (95)

and the interaction Hamiltonian $H_{\rm int}$


$\displaystyle H_{\rm int}$ $\textstyle =$ $\displaystyle -\frac{1}{2}\sum_{i\ne j,\alpha\beta} K_{\alpha\beta}(ij) P_{i}^{\alpha}P_{j}^{\beta}a_0^{-2}$ (96)
$\displaystyle K_{\alpha\beta}(ij)$ $\textstyle \equiv$ $\displaystyle a_0^2\frac{R_{ij}^{\alpha}R_{ij}^{\beta}}{\vert\vec R_{ij}\vert^2}[c_L(ij)-c_T(ij)]
+a_0^2\delta_{\alpha\beta}c_T(ij)$