- 1
- Independent international Scientific Consultant, email: mcphase@icloud.com
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 2
- Dept. Physics and Astronomy, Seoul National University, Seoul 151-742, Korea
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 3
- Universität Regensburg
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 4
- University of Oxford, Physics Department, Clarendon Laboratory, Parks Road, Oxford, UK
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 5
- Forschungszentrum Jülich, D-52425 Jülich, Germany
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 6
- Wien, Austria
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 7
- Note that these conditions are essential and put a limit to the
applicability of the theory, for example in the case of charge transfer excitations from
one subsystem to the next.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 8
- In addition to
the module also returns
the partition sum and the magnetic energy
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 9
- Note that if you use the
module cfield, the choice is more unconventional:, and
Tools for rotating crystal field parameters are described in appendix I.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 10
- Note two
special cases:If MAXNOFMFLOOPS=1, then the mean fields are calculated from the initial values
of the spin configuration and free energy is evaluated immediately without checking convergence.
If MAXNOFMFLOOPS=2, then from calculated mean fields the spins are calculated and
free energy is evaluated, without checking convergence. For MAXNOFMFLOOPS2 free energy is
only evaluated if the iteration reached the convergence limit specified by MAXSTAMF.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 11
- Alternatively, one may make use of the program spins.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 12
-
,
if is not parallel to the rotation axis. Thus for some rotation the elastic energy
will depend on rotation angle if transversal springs are introduced.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 13
- S. Bluegel, Juelich, private communication
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 14
- Note that we do not calculate all the
terms in the braces in the first line of equation 4. In particular using the
central field approximation the first summation produces Hydrogen-like energy levels, called
configurations, which are split into terms by the second summation. What we refer to
as the Coulomb interaction is only this second summation, and we shall consider the lowest
energy configuration only. This configuration corresponds to the outer most electrons in ion, and is
labelled , for example, for Ce.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 15
- For the case of -coupling this corresponds to ignoring the Coulomb and SO
interactions, which are in this limit both much larger than the CF. For -coupling, the Coulomb
interaction is treated as small and neglected, but the spin-orbit interaction is considered.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 16
- Also
denoted .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 17
- Equation 11
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 18
- Except for the case of the rotation group in 3 dimensions, SO(3) (whose
representations are labelled by the angular momentum quantum numbers, and ), where they are
simply the symbols
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 19
- http://cpc.cs.qub.ac.uk/cpc/cgi-bin/showversions.pl/?catid=acry
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 20
- Eqn
16 for SO, and 25-27 for CF, and reproduced in more modern notation in appendix C
of [50]
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 21
- Eqns 66 for the conversion of the Racah parameters to Slater
integrals, 63 for the operator, 69 for , 73-74 for , and 78, 28 and 80-87 for
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 22
- Eqn 7-58
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 23
- Depending on the Java setup on your computer, a conflict may occur between the McPhase
Java programs and other Java programs, such as the Matlab GUI. If you find that no graphics
windows open, and have other Java programs running in the background, try to close all other Java programs.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 24
- Note that table 6-1 and equ 6-7 are not correct in this reference.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 25
- Note that these conditions are essential and put a limit to the
applicability of the theory, for example in the case of charge transfer excitations from
one subsystem to the next [70].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 26
- the
on top of indicates matrix notation
for
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 27
- supplementary material - screen
shot movie comparing the speed of traditional Green's function method and DMD
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 28
- In case
of magnetic order. In general this will be the unit cell of
the Bravais lattice in section M, which
is a superlattice of the crystal lattice.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- 29
- using the appropriate
expression for the matrix elements of of the scattering
operator as given in [30, equ. (11.86) or (11.87b)].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.