Dzyaloshinskii-Moriya interaction

DMI can be written in the form of the two-ion interaction as

  $\displaystyle \hat{\mathcal{H}}_{DMI}
=
-
\frac{1}{2}
\sum_{nn^{\prime}...
..._{n})
\hat{\mathcal{I}}_{\alpha}^n
\hat{\mathcal{I}}_{\beta}^{n^{\prime}}
$ (10)
where the operators are understood as $\hat{\mathcal{I}}_{1} \leftrightarrow \hat{J}_x$, $\hat{\mathcal{I}}_{2} \leftrightarrow \hat{J}_y$, $\hat{\mathcal{I}}_{3} \leftrightarrow \hat{J}_z$ and $\mathcal{J}_{\alpha\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n})$ is a skew-symmetric matrix.