Crystal field

Single-ion crystal field is written with Stevens operators as

  $\displaystyle \hat{\mathcal{H}}_{CF1-S}(n)
=
\sum_{lm}
B_l^m
\hat{O}_{lm}(\mathbf{J}^n)
$ (13)
or with Wybourne operators $\hat{T}_{lm}^n$ and Wybourne parameters $L_l^m$ as
  $\displaystyle \hat{\mathcal{H}}_{CF1-W}(n)
=
\sum_{lm}
L_l^m(n)
\hat{T}_{lm}^{n}
$ (14)
where $\hat{T}_{lm}^n$ is an operator equivalents of real valued spherical harmonic functions
$\displaystyle \hat{T}_{l0}$ $\textstyle =$ $\displaystyle \sqrt{4\pi/(2l+1)}
\sum_i
Y_{l0}(\Omega_{i_n}),$ 
$\displaystyle \hat{T}_{l,\pm\vert m\vert}$ $\textstyle =$ $\displaystyle \sqrt{4\pi/(2l+1)}
\sum_i
\sqrt{\pm 1}
[Y_{l,-\vert m\vert}(\Omega_{i_n}) \pm (-1)^m Y_{l,\vert m\vert}(\Omega_{i_n})]$(15)
for the ion $n$, where index $i_n$ runs over all electrons in the open shell of an ion (d, f). Two-ion crystal field can be written with the Stevens operators as
  $\displaystyle \hat{\mathcal{H}}_{CF2-S}
=
-\frac{1}{2}
\sum_{nn^{\prime}}...
..._{lm}(\mathbf{J}^n)
\hat{O}_{l^{\prime}m^{\prime}}(\mathbf{J}^{n^{\prime}})
$ (16)
or with the Wybourne operators as
  $\displaystyle \hat{\mathcal{H}}_{CF2-W}
=
-
\frac{1}{2}
\sum_{nn^{\prim...
...me})
\hat{T}_{kq}^n
\hat{T}_{k^{\prime}q^{\prime}}^{n^{\prime}}
\Biggr]
$ (17)
where operators are defined as $\hat{\mathcal{I}}_{\alpha}^n \leftrightarrow \hat{O}_{lm}(\mathbf{J}^n)$ or $\hat{\mathcal{I}}_{\alpha}^n \leftrightarrow \hat{T}_{kq}^n$ and index $\alpha$ runs over $m$ pairs of $(l,m)$ or $(k,q)$ respectively. Interaction parameters are either $\mathcal{J}_{\alpha,\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}) \leftrightarrow K_{ll^{\prime}}^{mm^{\prime}}(nn^{\prime})$ or $\mathcal{J}_{\alpha,\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}) \leftrightarrow \mathcal{K}_{kk^{\prime}}^{qq^{\prime}}(nn^{\prime})$, where index $\beta$ runs over $m$ pairs of $(l^{\prime},m^{\prime})$ or $(k^{\prime},q^{\prime})$ respectively.