Here are example files of a tetragonal antiferromagnet with nearest neighbour interactions, all files are equivalent:
# simple antiferromagnet #<!--mcphase.mcphas.j--> #*************************************************************** # Lattice Constants (A) #! a=4.3843 b=4.3843 c=2.4194 alpha= 90 beta= 90 gamma= 90 #! r1a= 1 r2a= 0 r3a= 0 #! r1b= 0 r2b= 1 r3b= 0 primitive lattice vectors [a][b][c] #! r1c= 0 r2c= 0 r3c= 1 #! nofatoms=1 nofcomponents=3 number of atoms in primitive unit cell/number of components of each spin # **************************************************************************** #! da= 0 [a] db= 0 [b] dc= 0 nofneighbours=2 diagonalexchange=0 sipffilename=Ce3p.sipf # da[a] db[b] dc[c] Jaa[meV] Jbb[meV] Jcc[meV] Jab[meV] Jba[meV] Jac[meV] Jca[meV] Jbc[meV] Jcb[meV] +0 +0 +1 -0.1 -0.1 -0.1 0 0 0 0 0 0 +0 +0 -1 -0.1 -0.1 -0.1 0 0 0 0 0 0 #
Using diagonalexchange this may be shortened to
# simple antiferromagnet #<!--mcphase.mcphas.j--> #*************************************************************** # Lattice Constants (A) #! a=4.3843 b=4.3843 c=2.4194 alpha= 90 beta= 90 gamma= 90 #! r1a= 1 r2a= 0 r3a= 0 #! r1b= 0 r2b= 1 r3b= 0 primitive lattice vectors [a][b][c] #! r1c= 0 r2c= 0 r3c= 1 #! nofatoms=1 nofcomponents=3 number of atoms in primitive unit cell/number of components of each spin # **************************************************************************** #! da= 0 [a] db= 0 [b] dc= 0 nofneighbours=2 diagonalexchange=1 sipffilename=Ce3p.sipf # da[a] db[b] dc[c] Jaa[meV] Jbb[meV] Jcc[meV] Jab[meV] Jba[meV] Jac[meV] Jca[meV] Jbc[meV] Jcb[meV] +0 +0 +1 -0.1 -0.1 -0.1 +0 +0 -1 -0.1 -0.1 -0.1 #
with indexexchange option the sequence of two ion interaction parameters can be changed and zero parameters may be omitted:
# simple antiferromagnet #<!--mcphase.mcphas.j--> #*************************************************************** # Lattice Constants (A) #! a=4.3843 b=4.3843 c=2.4194 alpha= 90 beta= 90 gamma= 90 #! r1a= 1 r2a= 0 r3a= 0 #! r1b= 0 r2b= 1 r3b= 0 primitive lattice vectors [a][b][c] #! r1c= 0 r2c= 0 r3c= 1 #! nofatoms=1 nofcomponents=3 number of atoms in primitive unit cell/number of components of each spin # **************************************************************************** #! da= 0 [a] db= 0 [b] dc= 0 nofneighbours=2 diagonalexchange=2 sipffilename=Ce3p.sipf # da[a] db[b] dc[c] Jaa[meV] Jbb[meV] Jcc[meV] Jab[meV] Jba[meV] Jac[meV] Jca[meV] Jbc[meV] Jcb[meV] #! indexexchange = JaJa JaJc JcJa JbJb JcJc +0 +0 +1 -0.1 0 0 -0.1 -0.1 +0 +0 -1 -0.1 0 0 -0.1 -0.1 #
# simple antiferromagnet #<!--mcphase.mcphas.j--> #*************************************************************** # Lattice Constants (A) #! a=4.3843 b=4.3843 c=2.4194 alpha= 90 beta= 90 gamma= 90 #! r1a= 1 r2a= 0 r3a= 0 #! r1b= 0 r2b= 1 r3b= 0 primitive lattice vectors [a][b][c] #! r1c= 0 r2c= 0 r3c= 1 #! nofatoms=1 nofcomponents=3 number of atoms in primitive unit cell/number of components of each spin # **************************************************************************** #! da= 0 [a] db= 0 [b] dc= 0 nofneighbours=2 diagonalexchange=2 sipffilename=Ce3p.sipf # da[a] db[b] dc[c] Jaa[meV] Jbb[meV] Jcc[meV] Jab[meV] Jba[meV] Jac[meV] Jca[meV] Jbc[meV] Jcb[meV] #! indexexchange = 1,1 1,3, 3,1 2,2 3,3 +0 +0 +1 -0.1 0 0 -0.1 -0.1 +0 +0 -1 -0.1 0 0 -0.1 -0.1 #
using symmetricexchange together with indexexchange will assume that the interaction tensor is symmetic and only half of it may be given:
# simple antiferromagnet #<!--mcphase.mcphas.j--> #*************************************************************** # Lattice Constants (A) #! a=4.3843 b=4.3843 c=2.4194 alpha= 90 beta= 90 gamma= 90 #! r1a= 1 r2a= 0 r3a= 0 #! r1b= 0 r2b= 1 r3b= 0 primitive lattice vectors [a][b][c] #! r1c= 0 r2c= 0 r3c= 1 #! nofatoms=1 nofcomponents=3 number of atoms in primitive unit cell/number of components of each spin # **************************************************************************** #! da= 0 [a] db= 0 [b] dc= 0 nofneighbours=2 diagonalexchange=2 sipffilename=Ce3p.sipf # da[a] db[b] dc[c] Jaa[meV] Jbb[meV] Jcc[meV] Jab[meV] Jba[meV] Jac[meV] Jca[meV] Jbc[meV] Jcb[meV] #! symmetricexchange=1 indexexchange = JaJa JaJc JbJb JcJc +0 +0 +1 -0.1 0 -0.1 -0.1 +0 +0 -1 -0.1 0 -0.1 -0.1 #