Here is an example file mcphas.cf1 describing the anisotropy of a simple antiferromagnet with Ce atoms having basal plane anisotropy. Note the axis convention xyzabc, in case of non-orthogonal axes the convention is , and perpendicular to and .
#!MODULE=so1ion #<!--mcphase.sipf--> #*************************************************************** # Single Ion Parameter File for Module Cfield for # mcphas version 3.0 # - program to calculate static magnetic properties # reference: M. Rotter JMMM 272-276 (2004) 481 # mcdisp version 3.0 # - program to calculate the dispersion of magnetic excitations # reference: M. Rotter et al. J. Appl. Phys. A74 (2002) 5751 # mcdiff version 3.0 # - program to calculate neutron and magnetic xray diffraction # reference: M. Rotter and A. Boothroyd PRB 79 (2009) 140405R #*************************************************************** # # # crystal field paramerized in Stevens formalism # #----------- IONTYPE=Ce3+ #----------- #-------------------------------------------------------------------------- # Crystal Field parameters in Stevens Notation (coordinate system xyz||abc) #-------------------------------------------------------------------------- units=meV B20=0.02 #---------------- # Stevens Factors #---------------- ALPHA=-0.0571429 BETA=0.00634921 GAMMA=0 #--------------------------------------------------------- # Radial Matrix Elements (e.g. Abragam Bleaney 1971 p 399) #--------------------------------------------------------- #<r^2> in units of a0^2 a0=0.5292 Angstroem R2=1.309 #<r^4> in units of a0^4 a0=0.5292 Angstroem R4=3.964 #<r^6> in units of a0^6 a0=0.5292 Angstroem R6=23.31 #---------------- # Lande factor gJ #---------------- GJ=0.857143 #------------------------------------------------------- # Neutron Scattering Length (10^-12 cm) (can be complex) #------------------------------------------------------- SCATTERINGLENGTHREAL=0.484 SCATTERINGLENGTHIMAG=0 # ... note: - if an occupancy other than 1.0 is needed, just reduce # the scattering length linear accordingly #------------------------------------------------------- # Debye-Waller Factor: sqr(Intensity)~|sf|~EXP(-2 * DWF *s*s)=EXP (-W) # with s=sin(theta)/lambda=Q/4pi # relation to other notations: 2*DWF=Biso=8 pi^2 <u^2> # unit of DWF is [A^2] #------------------------------------------------------- DWF=0 #-------------------------------------------------------------------------------------- # Neutron Magnetic Form Factor coefficients - thanks to J Brown # d = 2*pi/Q # s = 1/2/d = Q/4/pi # sin(theta) = lambda * s # r= s*s = Q*Q/16/pi/pi # # <j0(Qr)>= FFj0A*EXP(-FFj0a*r) + FFj0B*EXP(-FFj0b*r) + FFj0C*EXP(-FFj0c*r) + FFj0D # <j2(Qr)>=r*(FFj2A*EXP(-FFj2a*r) + FFj2B*EXP(-FFj2b*r) + FFj2C*EXP(-FFj2c*r) + FFj2D # <j4(Qr)>=r*(FFj4A*EXP(-FFj4a*r) + FFj4B*EXP(-FFj4b*r) + FFj4C*EXP(-FFj4c*r) + FFj4D # <j6(Qr)>=r*(FFj6A*EXP(-FFj6a*r) + FFj6B*EXP(-FFj6b*r) + FFj6C*EXP(-FFj6c*r) + FFj6D # # Dipole Approximation for Neutron Magnetic Formfactor: # -Spin Form Factor FS(Q)=<j0(Q)> # -Angular Form Factor FL(Q)=<j0(Q)>+<j2(Q)> # -Rare Earth Form Factor F(Q) =<j0(Q)>+<j2(Q)>*(2/gJ-1) #-------------------------------------------------------------------------------------- FFj0A=+0.2953 FFj0a=+17.6846 FFj0B=+0.2923 FFj0b=+6.7329 FFj0C=+0.4313 FFj0c=+5.3827 FFj0D=-0.0194 FFj2A=+0.9809 FFj2a=+18.0630 FFj2B=+1.8413 FFj2b=+7.7688 FFj2C=+0.9905 FFj2c=+2.8452 FFj2D=+0.0120