Example mcphas.j file for a simple antiferromagnet

Here are example files of a tetragonal antiferromagnet with nearest neighbour interactions, all files are equivalent:

 
# simple antiferromagnet 
#<!--mcphase.mcphas.j-->
#***************************************************************
# Lattice Constants (A)
#! a=4.3843 b=4.3843 c=2.4194 alpha=  90 beta=  90 gamma=  90
#! r1a=   1 r2a=   0 r3a=   0
#! r1b=   0 r2b=   1 r3b=   0   primitive lattice vectors [a][b][c]
#! r1c=   0 r2c=   0 r3c=   1
#! nofatoms=1  nofcomponents=3  number of atoms in primitive unit cell/number of components of each spin
# ****************************************************************************
#! da=  0 [a] db=  0 [b] dc=  0 nofneighbours=2 diagonalexchange=0  sipffilename=Ce3p.sipf
# da[a] db[b] dc[c] Jaa[meV] Jbb[meV] Jcc[meV] Jab[meV] Jba[meV] Jac[meV] Jca[meV] Jbc[meV] Jcb[meV]
+0	+0	+1	-0.1	-0.1	-0.1   0  0  0  0  0  0
+0	+0	-1	-0.1	-0.1	-0.1   0  0  0  0  0  0
#

Using diagonalexchange this may be shortened to

 
# simple antiferromagnet 
#<!--mcphase.mcphas.j-->
#***************************************************************
# Lattice Constants (A)
#! a=4.3843 b=4.3843 c=2.4194 alpha=  90 beta=  90 gamma=  90
#! r1a=   1 r2a=   0 r3a=   0
#! r1b=   0 r2b=   1 r3b=   0   primitive lattice vectors [a][b][c]
#! r1c=   0 r2c=   0 r3c=   1
#! nofatoms=1  nofcomponents=3  number of atoms in primitive unit cell/number of components of each spin
# ****************************************************************************
#! da=  0 [a] db=  0 [b] dc=  0 nofneighbours=2 diagonalexchange=1  sipffilename=Ce3p.sipf
# da[a] db[b] dc[c] Jaa[meV] Jbb[meV] Jcc[meV] Jab[meV] Jba[meV] Jac[meV] Jca[meV] Jbc[meV] Jcb[meV]
+0	+0	+1	-0.1	-0.1	-0.1   
+0	+0	-1	-0.1	-0.1	-0.1   
#

with indexexchange option the sequence of two ion interaction parameters can be changed and zero parameters may be omitted:

 
# simple antiferromagnet 
#<!--mcphase.mcphas.j-->
#***************************************************************
# Lattice Constants (A)
#! a=4.3843 b=4.3843 c=2.4194 alpha=  90 beta=  90 gamma=  90
#! r1a=   1 r2a=   0 r3a=   0
#! r1b=   0 r2b=   1 r3b=   0   primitive lattice vectors [a][b][c]
#! r1c=   0 r2c=   0 r3c=   1
#! nofatoms=1  nofcomponents=3  number of atoms in primitive unit cell/number of components of each spin
# ****************************************************************************
#! da=  0 [a] db=  0 [b] dc=  0 nofneighbours=2 diagonalexchange=2  sipffilename=Ce3p.sipf
# da[a] db[b] dc[c] Jaa[meV] Jbb[meV] Jcc[meV] Jab[meV] Jba[meV] Jac[meV] Jca[meV] Jbc[meV] Jcb[meV]
#! indexexchange = JaJa JaJc JcJa JbJb JcJc
+0	+0	+1	-0.1 0 0 -0.1	-0.1  
+0	+0	-1	-0.1 0 0 -0.1	-0.1  
#

 
# simple antiferromagnet 
#<!--mcphase.mcphas.j-->
#***************************************************************
# Lattice Constants (A)
#! a=4.3843 b=4.3843 c=2.4194 alpha=  90 beta=  90 gamma=  90
#! r1a=   1 r2a=   0 r3a=   0
#! r1b=   0 r2b=   1 r3b=   0   primitive lattice vectors [a][b][c]
#! r1c=   0 r2c=   0 r3c=   1
#! nofatoms=1  nofcomponents=3  number of atoms in primitive unit cell/number of components of each spin
# ****************************************************************************
#! da=  0 [a] db=  0 [b] dc=  0 nofneighbours=2 diagonalexchange=2 sipffilename=Ce3p.sipf
# da[a] db[b] dc[c] Jaa[meV] Jbb[meV] Jcc[meV] Jab[meV] Jba[meV] Jac[meV] Jca[meV] Jbc[meV] Jcb[meV]
#! indexexchange = 1,1 1,3, 3,1 2,2 3,3
+0	+0	+1	-0.1 0 0 -0.1	-0.1  
+0	+0	-1	-0.1 0 0 -0.1	-0.1  
#

using symmetricexchange together with indexexchange will assume that the interaction tensor is symmetic and only half of it may be given:

 
# simple antiferromagnet 
#<!--mcphase.mcphas.j-->
#***************************************************************
# Lattice Constants (A)
#! a=4.3843 b=4.3843 c=2.4194 alpha=  90 beta=  90 gamma=  90
#! r1a=   1 r2a=   0 r3a=   0
#! r1b=   0 r2b=   1 r3b=   0   primitive lattice vectors [a][b][c]
#! r1c=   0 r2c=   0 r3c=   1
#! nofatoms=1  nofcomponents=3  number of atoms in primitive unit cell/number of components of each spin
# ****************************************************************************
#! da=  0 [a] db=  0 [b] dc=  0 nofneighbours=2 diagonalexchange=2 sipffilename=Ce3p.sipf
# da[a] db[b] dc[c] Jaa[meV] Jbb[meV] Jcc[meV] Jab[meV] Jba[meV] Jac[meV] Jca[meV] Jbc[meV] Jcb[meV]
#! symmetricexchange=1 indexexchange = JaJa JaJc JbJb JcJc
+0	+0	+1	-0.1 0  -0.1	-0.1  
+0	+0	-1	-0.1 0  -0.1	-0.1  
#

For magnetoelastic problems elastic constants and magnetoelastic interactions can be entered in the following form, for the definition of the magnetoelastic constants $G_{\rm cfph}^{(\alpha\beta)\gamma}$ see equation (132):

 
# antiferromagnet with magnetoelastic interactions
#<!--mcphase.mcphas.j-->
#***************************************************************
# Lattice Constants (A)
# Lattice Constants (A)
#! a=8.062 b=8.062 c=8.062 alpha=90 beta=90 gamma=90
#! r1a=0 r2a=0.5 r3a=0.5
#! r1b=0.5 r2b=0 r3b=0.5 primitive lattice vectors [a][b][c]
#! r1c=0.5 r2c=0.5 r3c=0
#! nofatoms=1  nofcomponents=3  number of atoms in primitive unit cell/number of components of each spin
#
#! Primitive Unit Cell Volume [A^3]: pVol=130.999123582
# Nonzero Elastic constants   in meV per primitive unit cell in Voigt notation only first index<=second index has to be given
# because the constants are symmetric Celij=Celji
# Elastic constants refer to the Euclidean coordinate system ijk defined
# with respect to abc as j||b, k||(a x b) and i normal to k and j
# Note: these elastic constants refer to the elastic energy in the Hemiltonian
#   and do not necessarily correspond to the experimental elastic constants
# a) if phonon degrees of freedom are present, use elastic constants as created by 
#    makenn (see manual section on Crystal field Phonon Interaction -  Elastic energy)
# b) if only magnetic ions are present - use effective elastic constants 
#    as measured at high temperature or computed by mcphasit or     reduce_unitcell from a 
#    phonon model    
#!  Cel11=+121111.877 Cel12=+35479.1703 Cel13=+35479.1703
#!  Cel22=+121111.877 Cel23=+35479.1703
#!  Cel33=+121111.877
#!  Cel44=+35479.1703
#!  Cel55=+35479.1703
#!  Cel66=+35479.1703 
#! unit conversion:  1 meV/Primitive Unit Cell Volume =0.00122304635038043 GPa
#
# ****************************************************************************
#! da=  0 [a] db=  0 [b] dc=  0 nofneighbours=2 diagonalexchange=2 sipffilename=Ce3p.sipf
#   G indices:  
#  epsilon_alphabeta(strain tensor indices-Voigt Notation),gamma(I-operator index, see so1ion Module definition)
#   .... this is explicitely ....
#          eps6,O22S eps4,O21S eps1,O20  eps2,O20 eps3,O20 ... 
#! Gindices=  6,4      4,5       1,6        2,6      3,6    5,7 1,8 2,8 4,17 6,18  6,19 1,20 2,20  4,21 6,21 1,22 4,23  6,23 1,24 2,24 
#   corresponding magnetoelastic constants (meV)
#! G=  21.28 42.56 10.64 10.64 -21.28 42.56  -31.9231.92 -0.462 -0.132 0.066  0.0642 0.064 0.096 0.066 -0.126 0.126 0.46 0.448 0.448 0.228
# da[a] db[b] dc[c] Jaa[meV] Jbb[meV] Jcc[meV] Jab[meV] Jba[meV] Jac[meV] Jca[meV] Jbc[meV] Jcb[meV]
#! symmetricexchange=1 indexexchange = JaJa JaJc JbJb JcJc
+0	+0	+1	-0.1 0  -0.1	-0.1  
+0	+0	-1	-0.1 0  -0.1	-0.1  
#