Stevens Operators

In the single ion module so1ion the operators are identified as shown below with $I_{\alpha}$.


$\displaystyle X=J(J+1)$     
$\displaystyle O_{00}$ $\textstyle =$ $\displaystyle 1$ 
$\displaystyle \hline
O_{11}$ $\textstyle =$ $\displaystyle \frac{1}{2}[J_++J_-]=J_x=I_1$ 
$\displaystyle O^s_{11}$ $\textstyle =$ $\displaystyle \frac{-i}{2}[J_+-J_-]=J_y=I_2$ 
$\displaystyle O_{10}$ $\textstyle =$ $\displaystyle J_z=I_3$ 
$\displaystyle \hline
O^s_{22}$ $\textstyle =$ $\displaystyle \frac{-i}{2}[J_+^2-J_-^2]=J_xJ_y+J_yJ_x=2P_{xy}=I_4$ 
$\displaystyle O^s_{21}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[J_z(J_+-J_-)+(J_+-J_-)J_z]=\frac{1}{2}[J_yJ_z+J_zJ_y]=P_{yz}=I_5$ 
$\displaystyle O_{20}$ $\textstyle =$ $\displaystyle [3J_z^2-X]=I_6$ 
$\displaystyle O_{21}$ $\textstyle =$ $\displaystyle \frac{1}{4}[J_z(J_++J_-)+(J_++J_-)J_z]=\frac{1}{2}[J_xJ_z+J_zJ_x]=P_{xz}=I_7$ 
$\displaystyle O_{22}$ $\textstyle =$ $\displaystyle \frac{1}{2}[J_+^2+J_-^2]=J_x^2-J_y^2 =I_8$ 
$\displaystyle \hline
O^s_{33}$ $\textstyle =$ $\displaystyle \frac{-i}{2}[J_+^3-J_-^3]=I_9$ 
$\displaystyle O^s_{32}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+^2-J_-^2)J_z+J_z(J_+^2-J_-^2)]=I_{10}$ 
$\displaystyle O^s_{31}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+-J_-)(5J_z^2-X-1/2)+(5J_z^2-X-1/2)(J_+-J_-)]=I_{11}$ 
$\displaystyle O_{30}$ $\textstyle =$ $\displaystyle [5J_z^3-(3X-1)J_z]=I_{12}$ 
$\displaystyle O_{31}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_++J_-)(5J_z^2-X-1/2)+(5J_z^2-X-1/2)(J_++J_-)] =I_{13}$ 
$\displaystyle O_{32}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_+^2+J_-^2)J_z+J_z(J_+^2+J_-^2)]=I_{14}$ 
$\displaystyle O_{33}$ $\textstyle =$ $\displaystyle \frac{1}{2}[J_+^3+J_-^3]=I_{15}$ 
$\displaystyle \hline
O^s_{44}$ $\textstyle =$ $\displaystyle \frac{-i}{2}[(J_+^4-J_-^4]=I_{16}$ 
$\displaystyle O^s_{43}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+^3-J_-^3)J_z+J_z(J_+^3-J_-^3)] =I_{17}$ 
$\displaystyle O^s_{42}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+^2-J_-^2)(7J_z^2-X-5)+(7J_z^2-X-5)(J_+^2-J_-^2)]=I_{18}$ 
$\displaystyle O^s_{41}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+-J_-)(7J_z^3-(3X+1)J_z)+(7J_z^3-(3X+1)J_z)(J_+-J_-)]=I_{19}$ 
$\displaystyle O_{40}$ $\textstyle =$ $\displaystyle [35J_z^4-(30X-25)J_z^2+3X^2-6X]=I_{20}$ 
$\displaystyle O_{41}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_++J_-)(7J_z^3-(3X+1)J_z)+(7J_z^3-(3X+1)J_z)(J_++J_-)]=I_{21}$ 
$\displaystyle O_{42}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_+^2+J_-^2)(7J_z^2-X-5)+(7J_z^2-X-5)(J_+^2+J_-^2)] =I_{22}$ 
$\displaystyle O_{43}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_+^3+J_-^3)J_z+J_z(J_+^3+J_-^3)]=I_{23}$ 
$\displaystyle O_{44}$ $\textstyle =$ $\displaystyle \frac{1}{2}[(J_+^4+J_-^4]=I_{24}$ 
$\displaystyle \hline
O^s_{55}$ $\textstyle =$ $\displaystyle \frac{-i}{2}[J_+^5-J_-^5]=I_{25}$ 
$\displaystyle O^s_{54}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+^4-J_-^4)J_z+J_z(J_+^4-J_-^4)]=I_{26}$ 
$\displaystyle O^s_{53}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+^3-J_-^3)(9J_z^2-X-33/2)+(9J_z^2-X-33/2)(J_+^3-J_-^3)]=I_{27}$ 
$\displaystyle O^s_{52}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+^2-J_-^2)(3J_z^3-(X+6)J_z)+(3J_z^3-(X+6)J_z)(J_+^2-J_-^2)]=I_{28}$ 
$\displaystyle O^s_{51}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+-J_-)\{21J_z^4-14J_z^2X+X^2-X+3/2\}+\{\dots\}(J_+-J_-)]=I_{29}$ 
$\displaystyle O_{50}$ $\textstyle =$ $\displaystyle [63J_z^5-(70X-105)J_z^3+(15X^2-50X+12)J_z]=I_{30}$ 
$\displaystyle O_{51}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_++J_-)(21J_z^4-14J_z^2X+X^2-X+3/2)+(21J_z^4-14J_z^2X+X^2-X+3/2)(J_++J_-)]=I_{31}$ 
$\displaystyle O_{52}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_+^2+J_-^2)(3J_z^3-(X+6)J_z)+(3J_z^3-(X+6)J_z)(J_+^2+J_-^2)] =I_{32}$ 
$\displaystyle O_{53}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_+^3+J_-^3)(9J_z^2-X-33/2)+(9J_z^2-X-33/2)(J_+^3+J_-^3)]=I_{33}$ 
$\displaystyle O_{54}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_+^4+J_-^4)J_z+J_z(J_+^4+J_-^4)]=I_{34}$ 
$\displaystyle O_{55}$ $\textstyle =$ $\displaystyle \frac{1}{2}[J_+^5+J_-^5]=I_{35}$ 
$\displaystyle \hline
O^s_{66}$ $\textstyle =$ $\displaystyle \frac{-i}{2}[J_+^6-J_-^6]=I_{36}$ 
$\displaystyle O^s_{65}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+^5-J_-^5)J_z+J_z(J_+^5-J_-^5)] =I_{37}$ 
$\displaystyle O^s_{64}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+^4-J_-^4)(11J_z^2-X-38)+(11J_z^2-X-38)(J_+^4-J_-^4)]=I_{38}$ 
$\displaystyle O^s_{63}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+^3-J_-^3)(11J_z^3-(3X+59)J_z)+(11J_z^3-(3X+59)J_z)(J_+^3-J_-^3)]=I_{39}$ 
$\displaystyle O^s_{62}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+^2-J_-^2)\{33J_z^4-(18X+123)J_z^2+X^2+10X+102\}+\{\dots\}(J_+^2-J_-^2)]=I_{40}$ 
$\displaystyle O^s_{61}$ $\textstyle =$ $\displaystyle \frac{-i}{4}[(J_+-J_-)\{33J_z^5-(30X-15)J_z^3+(5X^2-10X+12)J_z\}+\{\dots\}(J_+-J_-)]=I_{41}$ 
$\displaystyle O_{60}$ $\textstyle =$ $\displaystyle [231J_z^6-(315X-735)J_z^4+(105X^2-525X+294)J_z^2-5X^3+40X^2-60X]=I_{42}$ 
$\displaystyle O_{61}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_++J_-)\{33J_z^5-(30X-15)J_z^3+(5X^2-10X+12)J_z\}+\{\dots\}(J_++J_-)]=I_{43}$ 
$\displaystyle O_{62}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_+^2+J_-^2)\{33J_z^4-(18X+123)J_z^2+X^2+10X+102\}+\{\dots\}(J_+^2+J_-^2)]=I_{44}$ 
$\displaystyle O_{63}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_+^3+J_-^3)(11J_z^3-(3X+59)J_z)+(11J_z^3-(3X+59)J_z)(J_+^3+J_-^3)]=I_{45}$ 
$\displaystyle O_{64}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_+^4+J_-^4)(11J_z^2-X-38)+(11J_z^2-X-38)(J_+^4+J_-^4)]=I_{46}$ 
$\displaystyle O_{65}$ $\textstyle =$ $\displaystyle \frac{1}{4}[(J_+^5+J_-^5)J_z+J_z(J_+^5+J_-^5)]=I_{47}$ 
$\displaystyle O_{66}$ $\textstyle =$ $\displaystyle \frac{1}{2}[J_+^6+J_-^6]=I_{48}$